

Stiftehalter

Der Stiftehalter ist ein individueller Ziergegenstand für Ihren Schreibtisch. Der attraktive "Hingucker" wird in drei Arbeitsschritten unter Einsatz einer SINUMERIK-Steuerung mit ShopMill aus einem Rohling gefräst. Für die Fixierung beim Fräsen sorgen Standard - Spannbacken.

Alle für eine Nachfertigung erforderlichen Informationen, Zeichnungen, Werkzeugdaten und ShopMill-Arbeitspläne sind im Folgenden zusammengestellt.

Inhaltsverzeichnis

- 1. Sicherheitshinweis
- 2. Vorbemerkung
- 3. Zeichnungsliste
- 4. Werkstück und Maschine
- 5. Verwendete Werkzeuge zum Fräsen des Stiftehalters
- 6. Fräsen

Arbeitsschritte an der Fräsmaschine (3-Achsmaschine)
Arbeitsschritte an der Fräsmaschine (3 plus 2-Achsmaschine)

7. Informationen im Internet

1. Sicherheitshinweis

Der Umgang mit Maschinen bringt vielfältige Gefahren mit sich. Die gesetzlichen und betriebsüblichen Sicherheitsvorschriften sind daher auch bei der Herstellung des Stiftehalters unbedingt einzuhalten.

2. Vorbemerkung

Die folgende Beschreibung richtet sich an den mit einer CNC-Fräsmaschine vertrauten Praktiker der Erfahrung oder Kenntnisse mit der CNC-Steuerung SINUMERIK mit ShopMill/ShopTurn hat. Alle hier aufgelisteten Technologiedaten entsprechen den bei der Herstellung des Musters verwendeten Maschinen, Werkzeugen, Werkstoffen, Arbeitsplänen und Zeichnungen. Für eine Nachfertigung haben sie wegen der vielfältigen Gegebenheiten in anderen Werkstätten nur Beispielcharakter. Trotzdem sollte in den meisten Fällen eine reibungslose Nachfertigung möglich sein.

ShopMill ermöglicht das vollständige Fräsen des Stiftehalters in zwei oder drei Aufspannungen. Trotzdem sind die konstruktiven und gestalterischen Freiheiten vielfältig. So wird, z. B. der in ShopMill enthaltene Gravierzyklus hier genutzt. Die umfangreichen Möglichkeiten von ShopMill sind damit aber keineswegs ausgeschöpft und lassen noch viel Freiraum für Ihre Fantasie.

Um auf Nummer sicher zu gehen, empfehlen wir vor dem Start der Fertigung den Arbeitsschritt "Simulation durchführen", um die Arbeitspläne vor dem Start zu simulieren. So werden Kollisionen erkannt und vermieden.

Sämtliche Unterlagen und Fertigungsbeschreibungen zu den Werkstücken können Sie im registrierten Internet-Bereich "My SINUMERIK" unter **www.siemens.de/cnc4you** kostenlos downloaden.

Hier stellen wir Ihnen folgende Dateien und Formate zur Verfügung:

- Die Werkstückabmessung des Rohlings
- Die Spannsituation
- JobShop-Dateien (V6.4) für 3 bzw. 3 plus 2 Achsen
- Die JobShop-Simulation

3. Zeichnungsliste

- Spannsituation Stiftehalter
- Rohteildefinition Stiftehalter
- Fertigteil Stiftehalter

4. Werkstück und Maschine

- 1 Stück Rohteil für Stiftehalter, Werkstoff AlMg 4,5Mn Werkstoff Nr.: 3.3547, Rohteilmaße: 40 x 50 x 100 mm
- Fräsmaschine und Fräsprogramme
- Fräsmaschine ausgestattet mit Sinumerik 840D, 3 Achsen oder 3 plus 2 Achsen
- Fräsprogramm ShopMill Version 6.4

3-Achs-Maschine

- Programm BEARB_S1 zum Fräsen der 1. Spannung (bei einer 3-Achsmaschine)
- Programm BEARB_S2 zum Fräsen der 2. Spannung (bei einer 3-Achsmaschine)
- Programm BEARB_S3 zum Fräsen der 3. Spannung (bei einer 3-Achsmaschine)

3 plus 2 -Achs-Maschine

- Programm B0ARB_S1_3_2 zum Fräsen der 1. Spannung (bei einer 3 plus 2 -Achsmaschine)
- Programm B0ARB_S2_3_2 zum Fräsen der 2. Spannung (bei einer 3 plus 2 -Achsmaschine)

5. Verwendete Werkzeuge zum Fräsen des Stiftehalters

	re wentzeage		
Bezeichnung	Werkzeugname im Arbeitsplan	Bestellnr. der Werkzeuge von FA. Walter	Abbildung
PLANFRAESE R_D63_Z5	Planfräser	F2280.B.063DC.Z05.04	Da Dc d1
Wendeschneid- platten		ODHT0605ZZN-G88 WXN15	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$
FRAESER_WS PL_D32	Tauchfräser	F3040.T28.032.Z02.15	D _c
Wendeschneid- platten		ZDGT150412R-K85 WXN15	1000

SCHAFTFR_W SP_D25	Tauchfräser	F3040.T22.025.Z02.15	
BOHRN_FR_V HM_D16	VHM-Schaftfräser	F1720E.Z.16.Z2.26.45.W	D _c d ₁
BOHRN_FR_V HM_D20	VHM-Schaftfräser	F1720E.Z.20.Z2.32.45.W	Dc Lc d1
BOHRN_FR_V HM_D8	VHM-Schaftfräser	F1720E.Z.08.Z2.16.45.W	Oc Lc di
SCHAFTFR_W SP_D20	Eckfräser Xtra-tec	F4042.T18.020.Z02.08	D _C d ₁
Wendeschneid- platten		ADHT0803PER-G88 WXN15	

VHM_BOHRER _D11.5	Vollhartmetall- bohrer	B1420.Z.11,5.Z2.40 WXM35	
NC_ANBO_D1 2_90GR	VHM-NC-Anbohrer		
SPIBO_HSS_D 6.8	HSS Bohrer D6.8		
Einschraub- Werkzeugauf- nahmen SK40			- X ₃ - X ₄
		AK540.S40.T28.065	x ₂ x ₁
		AK540.S40.T22.060CO	12 dy 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
		AK540.S40.T18.100	d ₂ d ₃
Anzugsbolzen		C100.40.215	

6. Fräsen

Es werden ein Standard-Schraubstock und Spannbacken benötigt.

Arbeitsschritte an der Fräsmaschine (3-Achsmaschine)

- **6.1.** Referenzpunkt der Maschine anfahren
- **6.2.** Einlesen der Programme BEARB_S1.mpf, BEARB_S2.mpf und BEARB_S3.mpf
- **6.3.** Vermessene Werkzeuge in Werkzeugliste eintragen
- **6.4.** Werkzeuge in Magazin einsetzen
- **6.5.** Rohlinge in Schraubstock spannen

6.6. 1. Spannung für BEARB_S1

Werkstück-Nullpunkt setzen, Nullpunkt mittig (X- und Y-Achse Mitte Werkstück; Z-Achse oben am Fertigteil), Simulation durchführen, Fertigung starten, Arbeitsplan abarbeiten

6.7. 2. Spannung für BEARB_S2

Werkstück-Nullpunkt setzen, Nullpunkt mittig (X- und Y-Achse Mitte Werkstück; Z-Achse oben am Fertigteil), Simulation durchführen Fertigung starten, Arbeitsplan abarbeiten

6.8. 3. Spannung (nur bei 3-Achsmaschine) **für BEARB_S3**

Werkstück-Nullpunkt setzen, Nullpunkt mittig (X- und Y-Achse Mitte Werkstück; Z-Achse oben am Bauteil), Simulation durchführen Fertigung starten, Arbeitsplan abarbeiten

Arbeitsschritte an der Fräsmaschine (3 plus 2-Achsmaschine)

- **6.1.** Referenzpunkt der Maschine anfahren
- **6.2.** Einlesen der Programme BOARB_S1_3_2.mpf und BOARB_S2_3_2.mpf
- **6.3.** Vermessene Werkzeuge in Werkzeugliste eintragen
- **6.4.** Werkzeuge in Magazin einsetzen
- **6.5.** Rohlinge in Schraubstock spannen
- 6.6. 1. Spannung für BOARB_S1_3_2

Werkstück-Nullpunkt setzen, Nullpunkt mittig Simulation durchführen Fertigung starten, Arbeitsplan abarbeiten

6.7. 2. Spannung für BOARB S2 3 2

Werkstück-Nullpunkt setzen, Nullpunkt mittig Simulation durchführen Fertigung starten, Arbeitsplan abarbeiten

7. Informationen im Internet

Konstruktion der Teile, Erstellung der Zeichnungen, Entwicklung der Arbeitspläne für die Maschinenbearbeitung

Abmessungen und Leistungsdaten zu den verwendeten Werkzeugen

Walter – Gruppe, Germany / Deutschland

WALTER DEUTSCHLAND

Derendinger Straße 53, D-72072 Tübingen

Phone +49-70 71-70 16 04 E-mail: tools@walter-ag.de

Angaben zur verwendeten Werkzeugmaschine

Gildemeister Aktiengesellschaft, Gildemeisterstraße 60, 33689 Bielefeld,

Im Internet: www.gildemeister.com

Handbücher und Informationen der Siemens AG

Handbücher und ausführliche Informationen über unsere Produkte finden Sie unter www.siemens.de/sinumerik -> Index bzw. Suche: DOConWEB -> SINUMERIK

- Trainingsunterlage "Einfacher Fräsen mit ShopMill"
 - -> Info/Training -> Trainingsunterlage "Einfacher Fräsen mit ShopMill"
- Kurzanleitung ShopMill
 - -> 840D/840Di/810D Anwender -> ShopMill Kurzanleitung 840D/810D
- ShopMill Bedienen/Programmieren 840D/840Di/810D Anwender -> ShopMill Bedienen und Programmieren

Tipps zur Suche unter DOConWEB

DOConWEB ermöglicht den schnellen Aufruf einzelner Seiten aus Dokumenten ohne die komplette Datei zu laden.

- Sie haben die Möglichkeit, die Auswahl einzuschränken, indem Sie auf "A-Z" klicken (-> jetzt wird nur unterhalb dieses Punktes im Index gesucht),
- oder Sie klicken auf die Lupe
 (-> jetzt wird unterhalb dieses Punktes im Volltext gesucht).

