

Fundamentals of the thread types and threading

0

Principle and application with SINUMERIK Operate

siemens.com/cnc4you

Fundamentals of the thread types and threading

1	Overview of threads		
2	Thre	ead types and their advantages	
	2.1	Metric ISO thread and fine thread	
	2.2	Acme thread and pipe thread	
	2.3	Knuckle thread and buttress thread	
	2.4	Left-hand thread and multi-start thread	
3	Intro	aduction to throading	
3	mut	oduction to threading	
	3.1	Threading with rotating workpiece	

3.2 Thread turning with SINUMERIK Operate

4 Practice: Thread turning

1 Overview of threads

Definition and tasks

Definition

A thread is a spiral groove on a (usually) cylindrical object.

Classification

In terms of manufacturing/technology, threads are fits (standardized tolerances with narrow dimensions)

Source: https://www.augenblickeeingefangen.de/1/4-20-unc-buttonhead-screw

Main tasks

- Connecting (friction locking)
- Conversion of a rotating motion (rotary) to an axial motion (translatory)

Principle

For an male thread there is a matching female thread, i.e. same thread pitch, same core and flank dimensions, and same thread type.

Connecting:

The connection is prevented from coming loose by the forces of friction on the flanks.

Conversion of the motion:

When turning the threaded rod, the counterpart moves along the threaded rod.

1 Overview of threads

Dimensions and designations

Male thread

SIEMENS Ingenuity for life

The various types of threads differ in regard to:

- Flank profile
- Outer diameter
- Pitch
- Thread direction
- Number of threads
- System of units
- Runout
- Tapering
- Tolerance zone

Threads are given designations via the thread ID letters and the outer/nominal diameter (supplements, if necessary).

2 Thread types and their advantages Metric ISO thread

Source: https://schraube-mutter.de/gewinde-m18/

- The most widely used thread is the metric ISO thread (regular, standard or sharp thread)
- Profile shape in which the outer edges come together to form wedges. Due to this design, the thread is **selflocking**, i.e. it cannot come loose on its own.
- The flank angle for this type of thread is 60°

20

• Metric threads are used for threaded rods, nuts and bolts for securing frictional connections.

Thread designation:

2 Thread types and their advantages Metric ISO fine thread

- Same design as with a standard metric thread. The difference lies in a narrower, more shallow cut thread profile and non-standardized pitch.
 - \rightarrow As a consequence the metric fine thread can withstand more tensile force
- Often used where space is limited. For a regular thread, only a few threads would then be in the engagement.
- The flank angle is also 60°.
- The pitch is also specified in the designations of fine threads.

Source: Roloff, Matek; Maschinenelemente, 2007

Thread designation:

2 Thread types and their advantages Acme threads

Flank angle

Source: https://www.bornemanngewindetechnik.de/de/schwere-lasten-im-griffhochbelastete-trapezgewindetriebe-fuerhebeanlagen/

- In cross-section, the shape of the thread corresponds to an equal-sided trapezoid with an angle of 15°. This results in a flank angle of 30°.
- The acme thread is thicker than a standard thread and therefore has a larger pitch. In addition, it has relatively high friction, which has a self-locking effect.
- The acme thread is distinguished according to DIN:
 - DIN 380 sharp-edged acme thread
 - DIN 30295 rounded-off acme thread
- Used for screw clamps, printers, assembly belts, forklifts, etc.

Source: Roloff, Matek; Maschinenelemente, 2007

2 Thread types and their advantages

Pipe thread / Whitworth thread

Source: Roloff, Matek; Maschinenelemente, 2007

- The first thread (GB) that was subject to a standard.
- Flank angle of 55°, therefore not compatible with metric threads
- The Whitworth thread is available in two different versions:
 - Standard thread BSW (British Standard Whitworth Coarse Thread)
 - Fine thread BSF (British Standard Fine Thread) or BSP (British Standard Pipe Thread)
- Used especially in tube fittings (e.g. in shower fixtures)
- Unlike metric threads, the designations are based on inches. The pitch is also measured differently, using the number of windings per inch.

2 Thread types and their advantages Knuckle threads

- The knuckle thread was developed to reduce the maintenance and cleaning costs.
- Due to its shape, the thread is protected against contamination and, at the same time, they are more resistant due to rounded-off edges.
- Flank angle of 30° (DIN 405, 15403, 20400)
- Used in large valves or, for example, coupling spindles of railway carriages

2 Thread types and their advantages Buttress threads

- Asymmetrical thread shape, the profile of which resembles a saw tooth
- Due to the asymmetrical shape, the thread can transmit very high forces, in particular in the axial direction, i.e. along the threaded rod.
- Flank angle varies between 30° and 45°
- Thread form is defined in DIN 513, 2781, 20401, 55525 and 6063.
- This thread is mainly used in industrial applications for presses or hoisting systems.

Source: Roloff, Matek; Maschinenelemente, 2007

2 Thread types and their advantages Left-hand thread

- A left-hand thread is any thread that can be screwed into the material by turning counter-clockwise. It is the "mirror image" of a right-hand thread.
- Used whenever a standard thread could come loose under a given load.
- Application example:
 - Left-hand bike pedal a right-hand thread would automatically become unscrewed due to the rotating motion.
 - Securing the valves of gas bottles prevents other fixtures, such as those for oxygen bottles, from being connected.

2 Thread types and their advantages Multi-start threads

• Any thread that has more than one thread turn is called a multi-start thread.

- Multi-start threads are especially suitable when the thread pitches are large, because the thread turn already has a large distance from the last revolution after one revolution.
- Additional thread turns can be added in this gap.
- Used especially in small or thin-walled workpieces (e.g. shafts) of the optical industry, in which a single thread is not sufficient due to the space and the rotating/direction of motion.

Source: Ketterer

³ Introduction to threading Overview

- Thread turning
- Thread whirling
- Thread milling
- Tapping
- Drill thread milling
- Punch tapping

Threading can be done on both a turning or a milling machine.

³ Introduction to threading

Threading with rotating workpiece - thread whirling

Thread whirling

Process features

Thread whirling is a special method of threading. The tool is a whirling ring with blades that are aimed inward, which is positioned eccentrically with a high speed and circles the slowing rotating workpiece.

Advantages

- Uniform, favorable chip formation, high surface quality achievable
- Dry machining for the most part
- No buckling or striking of the rotating workpieces

Disadvantages

- Complex systems and special tools needed
- Time-consuming setting of the cutting edges on the whirling ring

Source: Spur et al., Metal Cutting Manual, 2014

³ Introduction to threading

Threading with rotating workpiece - thread turning

Thread turning

Process features

- Chipping process
- Suitable for female and male threading
- Flexibility with regard to the thread type (also multi-start threads, tapered threads, or thread chains)

Prerequisites

- Tool selection depends on the thread type
- Use of partial or full profile indexable inserts

Please note

• Profile tool, i.e. limited use of tool

Source: Spur et al., Metal Cutting Manual, 2014

Thread turning of parallel threads

SIEMENS	SINUMERI	K OPERATE	09/12/19 10:22 AM	
ic/wks/temp/temp	Thread longitudinal		Select	
D NO	Input T		Complete D 1	tool
	Table		None	Graphic
	P G	2.000	mm/rev	2
	S	2000	rpm	Thread
	Machi	ining	∇	long.
		Linear External th		2.40
	X0 20	200.000 0.000		Thread taper
	21	-50.000	inc	
	LW	1.000		Thread
	LR	2.000		face
	H1	1.500		
	αΡ	30.000		
	D1	0.300	mm	Thread
	U	0.000		chain
	VR	2.000		×
	Multip	ole	No	
	αθ	0.000	0	Cancel
				~
1				Accept
≣y Edit I [™] Drilling <mark>1→² Turn-</mark> p ² Cont. turn.	Milling Vari- ous	Simu- lation	Ex-	>

SIEMENS Ingenuity for life

Thread turning of tapered threads

NC/UKS/TEMP/TEMP Thread ta P END END END NC/UKS/TEMP/TEMP Thread ta T P G S Machining XØ ZØ X1 Z1 LW LR H1 aP D1 U VR Multiple aØ	IK OPERATE 09/12/19 10:24 AM	
NO T P G S Machining X0 Z0 X1 Z1 LW LR H1 aP D1 U VR Multiple		Select tool
	Complete D 1 2.000 mm/rev 0.000 pm 2000 rpm ining ✓ Linear External thread 200.000 0.000 0.000 inic -50.000 inc 1.000 2.000 30.000 ✓ 0.300 mm 0.000 mm	tool Graphic view 2 Thread g. Thread taper
Edit Milling 2 Turn- ing Cont. Milling Vari- us Cont.	0.000 ° Simu− Ex− lation Ex−	Cancel

SIEMENS Ingenuity for life

Thread turning of face threads

c/wks/temp/temp	Thread fac Input	9		
	Input			Select
	mput		Complete	tool
	Т		D 1	
	Р	2.000	mm/rev	Graphic
	G	0.000		view
	S	2000		
	Machining		∇	
		Linear		Thread
		External thr	ead	long.
	X0	200.000		
	20 X1	0.000 20.000	Inc	Thread
	ĹŴ	1.000	IIIC	and the second
	LR	2.000		2 [#]
	H1	1.500		~
	αΡ	30.000	o 💉	Thread
	D1	0.300		face
	U	0.000		
	Ŭ	0.000		Thread
	VR	2.000		chain
	Multiple	2.000	No	
	αθ	0.000		×
				Cancel
				~
				Accept
1				
		0.	E CONTRACTOR OF	
Edit 🚰 Drilling 🗾 Turn- 💕 Cont. 🖼 Milling	Vari- ous	Simu- lation	Ex- ecute	>

SIEMENS Ingenuity for life

Thread turning of thread chains

SIEMENS	SINUMERIK OPERATE 09/12/1 10:27 AD	
NC/UKS/TEMP/TEMP	Thread chain Input Complete	Select tool
	T D 1 S 2000 rpm Machining ⊽ Linear	Graphic view
	External thread X0 200.000 Z0 0.000 P0 2.000 mm/rev	Thread long.
	X1 5.000 inc Z1 -10.000 inc P1 2.000 mm/rev	Thread taper
	X2 10.000 inc Z2 -50.000 inc P2 2.000 mm/rev X3 5.000 inc	2 Thread
	Z3 -10.000 inc LW 1.000 LR 2.000	Thread chain
	H1 1.500 αP 30.000 ° 💉 D1 0.300 mm U 0.000	× Cancel
1	VR 2.000 Multiple No	Accept
Edit Frilling Internet ing Cont. Milling	NC Vari- ous Simu- lation Ex- ecute	>

Thread undercuts – predefined in SINUMERIK Operate!

5 Summary

Fundamentals of thread types and threading

- Fast and reliable threading with SINUMERIK Operate!
- **Convenient** cycle screens for producing a wide variety of thread types and thread undercuts.
- Realistic production-relevant simulation of threading.
- Longitudinal thread, tapered thread, thread chains, face thread, thread undercuts

With SINUMERIK, both cutting and non-cutting threading is possible on turning and milling machines!

Produced by

Digital Experience and Application Center Erlangen

Frauenauracher Strasse 80 91056 Erlangen, Germany

siemens.com/cnc4you